Última actualización:
3/30/2023
Años publicados: 2006, 2010, 2013, 2016, 2019, 2023
NORD gratefully acknowledges Prof. Tim Cundy, Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, New Zealand, for assistance in the preparation of this report.
Hereditary hyperphosphatasia is a rare genetic bone disorder (osteopathy) that usually becomes apparent during infancy or early childhood. Affected individuals develop progressive skeletal malformations especially in the long bones of the arms and legs. Skeletal malformations in the legs may cause problems walking and may eventually result in short stature. Additional symptoms include pain, fractures of affected bones and muscle weakness. Because the biochemical and radiographic findings of hereditary hyperphosphatasia are similar to those of Paget’s disease (a focal skeletal disorder of adults characterized by abnormal bone turnover), the disorder is sometimes referred to as juvenile Paget’s disease. However, despite these similarities, the two disorders are distinct. Hereditary hyperphosphatasia is inherited in an autosomal recessive pattern.
The severity of symptoms associated with hereditary hyperphosphatasia varies from patient to patient. Symptoms usually become apparent during infancy or early childhood usually between 2 and 3 years of age. Most individuals develop widening and bowing of the long bones of the legs eventually resulting in problems walking and short stature. Thickening of the upper domelike portion of the skull (calvaria) is another common finding.
Additional symptoms include pain, fractures of affected bones, abnormal front-to-back and side-to-side curvature of the spine (kyphoscoliosis) and muscle weakness. Deafness is common – it arises because of an impaired ability of the auditory nerves to transmit input to the brain (sensorineural hearing loss).
Ocular manifestations including optic nerve pallor, angioid streaks and retinal neovacularization may become evident in adolescence. Aneurysms of the internal carotid arteries and calcification of the external part of the ears (pinnae) have also been described.
Laboratory findings include greatly elevated bone turnover markers (such as plasma alkaline phosphatase).
About two-thirds of cases of hereditary hyperphosphatasia are caused by changes (mutations or pathogenic variants) of the TNFRSF11B gene
The human skeleton is living tissue that is either growing (in childhood) or being renewed (in adulthood). Bone turnover is a normal process in which bone gradually breaks down (resorption) and then new bone is laid down (formation). The cells that resorb bone are called osteoclasts and those that form new bone are called osteoblasts. The processes of resorption and formation are linked by a complex process that involves many factors, including a protein called osteoprotegerin, which is coded for by the TNFRSF11B gene.
Mutations affecting the TNFRSF11B gene result in deficiency of osteoprotegerin, which normally acts as a brake on bone resorption by regulating the activity of osteoclasts. Individuals with hereditary hyperphosphatasia have a deficiency of osteoprotegerin, which results in an increased rate of bone turnover.
Hereditary hyperphosphatasia is inherited in an autosomal recessive pattern. Genetic diseases are determined by the combination of genes for a particular trait that are on the chromosomes received from both the father and the mother.
Recessive genetic disorders occur when an individual inherits a non-working gene from each parent. If an individual receives one working gene and one non-working gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the non-working gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier, like the parents, is 50% with each pregnancy. The chance for a child to receive working genes from both parents is 25%. The risk is the same for males and females.
Hereditary hyperphosphatasia affects males and females in equal numbers. Like all recessive disorders it is more common in countries where within-family marriage is practiced. More than 50 cases have been described since the disorder was first reported in the medical literature in 1956.
A diagnosis of hereditary hyperphosphatasia is made based upon a thorough clinical evaluation, identification of characteristic symptoms and a variety of x-rays tests that reveal distinct radiographic findings. Affected individuals also have elevated levels of serum alkaline phosphatase and other biochemical markers of bone turnover, detectable through blood and urine tests.
Treatment
The treatment of hereditary hyperphosphatasia is directed toward the specific symptoms that are apparent in each individual. Treatment may require the coordinated efforts of a team of specialists. This will commonly include pediatricians, specialists who assess and treat skeletal malformations (orthopedic surgeons) and specialists who assess and treat hearing problems (audiologists) or eye problems (ophthalmologists), and other healthcare professionals.
Individuals with hereditary hyperphosphatasia have been treated with drugs known as bisphosphonates. These drugs reduce bone turnover by inhibiting bone resorption.
According to the medical literature, treatment with these drugs has led to improvement of bone-associated symptoms. Although studies assessing long-term effectiveness have not been conducted, the studies do suggest that bisphosphonate therapy can suppress bone turnover and prevent malformations. These drugs probably do not affect the ocular and vascular manifestations. In theory, the novel drug, denosumab, that directly targets the effects of osteoprotegerin deficiency might be better in this regard, although only preliminary reports of its effectiveness have so far been reported in the medical literature.
Genetic counseling is recommended for affected individuals and their families. Other treatment is symptomatic and supportive.
Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.
For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:
Toll-free: (800) 411-1222
TTY: (866) 411-1010
Email: [email protected]
Some current clinical trials also are posted on the following page on the NORD website:
https://rarediseases.org/for-patients-and-families/information-resources/info-clinical-trials-and-research-studies/
For information about clinical trials sponsored by private sources, in the main, contact:
www.centerwatch.com
For more information about clinical trials conducted in Europe, contact:
https://www.clinicaltrialsregister.eu/
Contact for more information about this condition:
Prof. Tim Cundy
Department of Medicine Faculty of Medical & Health Sciences
University of Auckland, New Zealand
[email protected]
TEXTBOOKS
Behrman RE, Kliegman RM, Jenson HB, eds. Nelson Textbook of Pediatrics. 17th ed. Elsevier Saunders. Philadelphia, PA; 2005:2344-5.
Kasper, DL, Fauci AS, Longo DL, et al., eds. Harrison’s Principles of Internal Medicine.
16th ed. McGraw-Hill Companies. New York, NY; 2005:2271.
Rimoin D, Connor JM, Pyeritz RP, Korf BR, eds. Emory and Rimoin’s Principles and Practice of Medical Genetics. 4th ed. Churchill Livingstone. New York, NY; 2002:4135-6.
Gorlin RJ, Cohen MMJr, Hennekam RCM, eds. Syndromes of the Head and Neck. 4th ed. Oxford University Press, New York, NY; 2001:303.
JOURNAL ARTICLES
Cundy T, Davidson J, Rutland MD, Stewart C, DePaoli AM. Recombinant osteoprotegerin for juvenile Paget’s disease. N Engl J Med. 2005;353:918-23.
Janssens K, de Vernejoul MC, de Freitas F, Vanhoenacker F, Van Hul W. An intermediate form of juvenile Paget’s disease caused by a truncating TNFRSF11B mutation. Bone. 2005;23:542-8.
Tau C, Mautalen C, Casco C, Alvarez V, Rubinstein M, Chronic idiopathic hyperphosphatasia: normalization of bone turnover with cyclical intravenous pamidronate therapy Bone 2004; 35 210-6.
Cundy T, Wheadon L, King A. Treatment of idiopathic hyperphosphatasia with intensive bisphosphonate therapy. J Bone Miner Res. 2004;19:703-11.
Chong B, Hegde M, Fawkner M, et al. Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res. 2003;18:2095-104.
Whyte MP, Obrecht SE, Patrick BS, et al. Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med. 2002;347:175-84.
Cundy T, Hedge M, Naot D, et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes idiopathic hyperphosphatasia phenotype. Hum Mol Genet. 2002;11:2119-27.
Tuysuz B, Mercimek S, Ungur S, Deniz M. Calcitonin treatment in osteoclasia with hyperphosphatasia (juvenile Paget’s disease): radiographic changes after treatment. Pediatr Radiol. 1999;29:838-41.
Antoniades K, Karakasis D, Kapetanos G, Lasaridis N, Tzarou V. Chronic idiopathic hyperphosphatasemia. Case report. Oral Surg Oral Med Oral Pathol. 1993;76:200-4.
INTERNET
McKusick VA., ed. Online Mendelian Inheritance in Man (OMIM). Baltimore. MD: The Johns Hopkins University; Entry No:239000; Last Update: 02/25/2022. Available at: https://www.omim.org/entry/239000 Accessed Jan 26, 2023.
NORD y la Fundación MedicAlert se han asociado en un nuevo programa para brindar protección a pacientes con enfermedades raras en situaciones de emergencia.
Aprende más https://rarediseases.org/patient-assistance-programs/medicalert-assistance-program/Asegurarse de que los pacientes y los cuidadores estén equipados con las herramientas que necesitan para vivir su mejor vida mientras manejan su condición rara es una parte vital de la misión de NORD.
Aprende más https://rarediseases.org/patient-assistance-programs/rare-disease-educational-support/Este programa de asistencia, primero en su tipo, está diseñado para los cuidadores de un niño o adulto diagnosticado con un trastorno raro.
Aprende más https://rarediseases.org/patient-assistance-programs/caregiver-respite/The information provided on this page is for informational purposes only. The National Organization for Rare Disorders (NORD) does not endorse the information presented. The content has been gathered in partnership with the MONDO Disease Ontology. Please consult with a healthcare professional for medical advice and treatment.
The Genetic and Rare Diseases Information Center (GARD) has information and resources for patients, caregivers, and families that may be helpful before and after diagnosis of this condition. GARD is a program of the National Center for Advancing Translational Sciences (NCATS), part of the National Institutes of Health (NIH).
View reportOrphanet has a summary about this condition that may include information on the diagnosis, care, and treatment as well as other resources. Some of the information and resources are available in languages other than English. The summary may include medical terms, so we encourage you to share and discuss this information with your doctor. Orphanet is the French National Institute for Health and Medical Research and the Health Programme of the European Union.
View reportOnline Mendelian Inheritance In Man (OMIM) has a summary of published research about this condition and includes references from the medical literature. The summary contains medical and scientific terms, so we encourage you to share and discuss this information with your doctor. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine.
View report