Última actualización:
7/23/2024
Años publicados: 1998, 1999, 2000, 2007, 2011, 2014, 2017, 2020, 2024
NORD gratefully acknowledges Charlotte Cunningham-Rundles, MD, PhD, Departments of Medicine, Pediatrics, The Prism Immunology Institute, The Icahn School of Medicine at Mount Sinai, for assistance in the preparation of this report.
Common variable immune deficiency (CVID) is a type of primary immunodeficiency, which is defined as an immune system dysfunction typically caused by a variant in a gene or genes. The World Health Organization (WHO) recognizes more than 400 primary immunodeficiencies ranging from relatively common to quite rare.
CVID is one of the most prevalent of the symptomatic primary immunodeficiencies and manifests a wide variability of symptoms and range of severity. While considered a genetic condition, the syndrome consists of a group of diseases, and most of the causes are still unknown. CVID is characterized by low levels of specific proteins (immunoglobulins) in the fluid portion of the blood. This results in a loss of antibodies and a decreased ability to fight invading microorganisms, toxins or other foreign substances. These immunoglobulins are produced by specialized white blood cells (B cells) as they mature into plasma cells.
The cause of CVID is unknown in at least 80% of affected individuals. A genetic cause has been identified in about 30%. Sporadic cases, with no apparent history of the disorder in the family, are the commonest form. These may be caused by a complex interaction of environmental and genetic components (multifactorial inheritance), but genes that are involved in the development and function of immune cells have now been shown to be the primary cause.
The clinical course and symptoms of CVID vary widely from mild to severe. The immunoglobulins affected also vary. For example, some patients have a deficiency in all three major types of immunoglobulins: immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM) while others have a shortage of just IgG and IgA. The diagnosis is made by finding that functional antibodies are very low or absent.
Onset of symptoms, including frequent and unusual infections, may first occur during childhood and adolescence; however, for many patients, the diagnosis may not be made until the third to fourth decade of life.
People with CVID have trouble fighting off infections because of a lack of antibodies which are normally made to resist invading microbes. As antibody production is impaired, vaccines are not effective. Recurrent bacterial infections, particularly affecting the upper and lower respiratory tracts, such as in the lungs, sinuses or ears, are common. Recurrent lung infections can lead to chronic lung disease and potentially life-threatening complications.
Gastrointestinal complications, such as infections or inflammation, are also prevalent. Some patients report abdominal pain, bloating, nausea, vomiting, diarrhea and weight loss. Affected individuals may also have an impaired ability to absorb nutrients such as vitamins, minerals, fat and certain sugars from the digestive tract. Individuals with CVID may also experience recurrent or chronic infections (giardiasis) of the small intestine caused by the single-celled parasite called Giardia lamblia.
Individuals with CVID also have an increased susceptibility to certain bacterial gastrointestinal infections (e.g., Campylobacter, etc.) or more recently, norovirus that causes symptoms similar to those associated with giardiasis.
Due to abnormalities in the maturation of B cells and dysregulation of the immune system, some individuals with CVID may have abnormal accumulations of lymphocytes in lymphoid tissues such as lymph nodes (lymphadenopathy) or spleen (splenomegaly). In some people, abnormal growth of small nodules of lymphoid tissue in the gastrointestinal tract (nodular lymphoid hyperplasia) may occur. In addition, an increased percentage of individuals with CVID are more prone to developing certain forms of cancer than the general population such as malignancies of lymphatic tissue (lymphoma) and possibly stomach cancer). The risk of gastric carcinoma is almost 50 times greater in patients with CVID than in other individuals.
In addition, some individuals with CVID may develop granular, inflammatory nodules (noncaseating granulomas) within tissue of the skin, lungs, spleen and/or liver.
Twenty to twenty-five percent of patients with CVID are prone to developing certain autoimmune disorders. Immune thrombocytopenia (ITP) and autoimmune hemolytic anemia (AIHA) anemia are the most frequently diagnosed conditions. (For more information on these disorders, choose “ITP” and “Anemia, Hemolytic, Acquired Autoimmune” as your search terms in the Rare Disease Database.)
It is not fully understood why CVID patients are at risk for autoimmune disorders. While one would assume that CVID suppresses the immune response, in fact, loss of normal controls in CVID leads to autoimmunity due to an overactive or unrestrained portion of the immune system. This then leads to an attack on the body’s healthy tissues and organs. This phenomenon has long shown that more complex defects in the immune system, beyond qualitative and quantitative defects in antibody production, underlie the diverse clinical manifestations of CVID.
The cause of CVID is unknown for most patients but a genetic cause has been identified in about 30%. Autosomal dominant (mostly) and autosomal recessive inheritance has been reported in CVID. More commonly, sporadic cases, with no apparent history of the disorder in their family, may still be caused by either rare autosomal gene variants or complex interactions of environmental and genetic causes (multifactorial inheritance). Changes (variants) in genes that are involved in the development and function of B cells can lead to CVID, but most of the causal genes identified are genes involved in regulation of immune responses.
B cells are specialized white blood cells that, as they mature into their final stage of plasma cells, produce special proteins called antibodies (immunoglobulins). These antibodies help protect the body against infection by attaching to specific invading microorganisms, toxins or other foreign substances (antigens), marking them for destruction. Individuals with CVID usually have a deficiency of all major immunoglobulin classes (panhypogammaglobulinemia). However, some affected individuals may have severely reduced levels of some immunoglobulins (i.e., IgG and IgA) and relatively normal levels of IgM.
Researchers have found that, in addition to defective B cells, errors in other immune cells (the T cell system) may either contribute to or be responsible for the irregularities in immunoglobulin production. Lack of T cell maturational influence on the developing B cell may lead to poor B cell development.
Previous research suggested that, in certain cases, CVID and selective IgA deficiency are somewhat related conditions. In multigenerational families (kindreds) some have CVID while other members of the same families have selective IgA deficiency. (For more information on selective IgA deficiency, refer to the Related Disorders section below.)
Dominant genetic disorders occur when only a single copy of a disease-causing gene variant is necessary to cause the disease. The gene variant can be inherited from either parent or can be the result of a new (de novo) changed gene in the affected individual that is not inherited. The risk of passing the gene variant from an affected parent to a child is 50% for each pregnancy. The risk is the same for males and females.
Recessive genetic disorders occur when an individual inherits a disease-causing gene variant from each parent. If an individual receives one normal gene and one disease-causing gene variant, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the gene variant and have an affected child is 25% with each pregnancy. The risk of having a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents is 25%. The risk is the same for males and females.
Variants in many genes have now been associated with CVID. Approximately 8% of affected individuals have variants in the TNFRSF13B gene but since variants in this gene can be found in unaffected relatives and blood bank normal donors, it is not considered a direct cause of CVID. The second most common gene associated with CVID is an autosomal dominant gene, NFKB1, but not all family members with a variant in this gene are affected. Other dominant genes associated with CVID include: NFKB2, CLTA4, PI3KCD, IKZF1 and STAT3. As for recessive genes, variants in LRBA are common in some groups. Much more rarely, variants in CD19, CD81, ICOS CD20, CD2, and TNFRSF13C have been identified.
CVID equally affects males and females. The prevalence of CVID is approximately 1 in 30,000 people. The diagnosis of CVID is not made in children under the age of 4, because until that time, it may be confused with other genetic disorders that must be excluded. In addition, it can be confused with physiologic immaturity. However, most patients have symptoms later and are not diagnosed until the age of 20-40.
In most patients, CVID is diagnosed based upon a thorough clinical evaluation, identification of characteristic symptoms and physical findings, a detailed patient and family history and a pattern of immune system defects confirmed by laboratory testing.
Confirmation of certain immunologic abnormalities plays an essential role in establishing the diagnosis of CVID. The diagnosis of CVID is primarily established by testing for low blood (serum) IgG immunoglobulin concentrations ranging from severely reduced (<100 mg/dL) to just below adult normal range (500-1200 mg/dL). In addition, laboratory testing may reveal normal or, in some people, reduced numbers of circulating B cells. Failure of certain B cells to appropriately mature into antibody-producing plasma cells may also be detected. Specialized laboratory tests may also help to determine the exact nature of the immune defect (e.g., B cell, helper T cell, suppressor T cell, or B and T cell defects). In many cases, X-ray, examination of the small intestine (enteroscopy), or surgical removal (biopsy) of small samples of tissue from lymph nodes may reveal certain abnormalities (e.g., nodular lymphoid hyperplasia). In addition, in some patients, specialized imaging tests followed by biopsy and microscopic examination may confirm the presence of granular, inflammatory nodules (noncaseating granulomas) within tissue of the skin, lungs, spleen and/or liver.
Treatment
The treatment of CVID requires the coordinated efforts of a team of specialists who may need to plan an affected individual’s treatment systematically and comprehensively. Such specialists may include physicians who diagnose and treat disorders of the blood (hematologists), the digestive tract (gastroenterologists) and/or the lungs (pulmonologists); specialists in the treatment of immune system disorders (immunologists) and/or other health care professionals.
The primary treatment for CVID consists of regular immunoglobulin (gamma globulin) therapy, which is administered by intravenous or subcutaneous infusion with antibodies obtained from the fluid portion of blood from many normal blood donors (gamma globulin). Such therapy may help to prevent the recurrent infections characteristic of CVID as well as treat the disorder’s associated symptoms.
Individuals with CVID who experience adverse reactions to intravenous gamma globulin may benefit from the subcutaneous delivery of this medication. In some people, the administration of medications that block the effects of the chemical histamine (antihistamines), which is released during allergic reactions or nonsteroidal anti-inflammatory agents (NSAIDs) are used. Rarely, hydrocortisone, a corticosteroid medication, may be needed prior to gamma globulin therapy. Because corticosteroids may suppress an already weakened immune system, NSAIDs may be helpful in controlling autoimmune-like symptoms while avoiding the use of corticosteroids. However, after having immunoglobulin therapy for several months, most patients no longer require any premedication.
Some researchers have recommended that when a patient is diagnosed with an autoimmune disease, the possibility of an underlying CVID should be evaluated before the administration of immunosuppressive drugs for the autoimmune disease.
Antibiotic medications often prove beneficial for the treatment of various bacterial infections associated with CVID. Patients with irregularities involving the malabsorption of vitamin B12 may also benefit from monthly B12 injections.
Affected individuals with severely low levels of circulating platelets may be cautioned to avoid the use of aspirin, since this medication may interfere with the ability of platelets to assist in the blood-clotting process. In addition, as is the case with individuals affected by many other primary immunodeficiency disorders, individuals with CVID should not receive live virus vaccines since there is the remote possibility that the vaccine strains of virus may cause disease because of their defective immune systems.
Surveillance for complications include periodic complete blood count (CBC) and differential white blood counts to detect lymphoma, annual thyroid examination and thyroid function testing, annual lung (pulmonary) function testing beginning about age eight to ten years, biopsy of enlarged lymphoid tissue and other imaging techniques for assessment of granulomatous disease and gastrointestinal complications.
Genetic counseling is recommended for affected individuals and their family members if a genetic type of CVID is suspected or confirmed. Other treatment is symptomatic and supportive.
The Immune Deficiency Foundation is conducting studies to determine the prevalence, treatment, costs and health insurance coverage of individuals with primary immunodeficiency diseases. For more information, contact the Immune Deficiency Foundation, which is listed below under Patient Organizations.
The Jeffrey Modell Centers Network (JMCN) is comprised of over 50 Diagnostic & Research Centers worldwide and more than 300 referral physicians at 138 academic teaching hospitals and medical schools in 39 countries and 120 cities, spanning 6 continents. For information on additional research concerning primary immunodeficiency diseases, contact the Jeffrey Modell Foundation, which is listed below under Patient Organizations.
Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov.All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.
For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:
Tollfree: (800) 411-1222
TTY: (866) 411-1010
Email: [email protected]
Some current clinical trials also are posted on the following page on the NORD website: https://rarediseases.org/living-with-a-rare-disease/find-clinical-trials/
For information about clinical trials sponsored by private sources, contact:
www.centerwatch.com
For information about clinical trials conducted in Europe, contact:
https://www.clinicaltrialsregister.eu/
Contact for additional information about common variable immune deficiency:
Charlotte Cunningham-Rundles, MD, PhD
Departments of Medicine, Pediatrics
The Prism Immunology Institute
The Icahn School of Medicine at Mount Sinai
1425 Madison Avenue,
New York City, New York, 10029
212 659 9268 (phone)
212 987 5593 (fax)
TEXTBOOKS
Charlotte Cunningham-Rundles, Klaus Warnatz, Chapter 18 – Hypogammaglobulinemia and common variable immune deficiency, Editor(s): Kathleen E. Sullivan, E. Richard Stiehm, Stiehm’s Immune Deficiencies (Second Edition), Academic Press, 2020, Pages 467-497.
Francisco A. Bonilla, Chapter 56 – Vaccination of immune-deficient patients, Editor(s): Kathleen E. Sullivan, E. Richard Stiehm, Stiehm’s Immune Deficiencies (Second Edition), Academic Press, 2020, Pages 1157-1173.
JOURNAL ARTICLES
Remiker A, Bolling K, Verbsky J. Common variable immunodeficiency. Med Clin North Am. 2024;108(1):107-121. doi:10.1016/j.mcna.2023.06.012
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol. 2023;19(6):627-638. doi:10.1080/1744666X.2023.2198208
Bousfiha A, Moundir A, Tangye SG, et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol. 2022;42(7):1508-1520. doi:10.1007/s10875-022-01352-z
Abolhassani H, Hammarström L, Cunningham-Rundles C. Current genetic landscape in common variable immune deficiency. Blood. 2020;135(9):656-667. doi:10.1182/blood.2019000929
Agarwal S, Cunningham-Rundles C. Autoimmunity in common variable immunodeficiency. Ann Allergy Asthma Immunol. 2019;123(5):454-460. doi:10.1016/j.anai.2019.07
Cunningham-Rundles C. Common variable immune deficiency: Dissection of the variable. Immunol Rev. 2019;287(1):145-161. doi:10.1111/imr.12728
INTERNET
Common variable immune deficiency. MedlinePlus. Last Update May 2016. http://ghr.nlm.nih.gov/condition/common-variable-immune-deficiency/ Accessed May 7, 2024.
Park CL. Pediatric Common variable immunodeficiency. Medscape. Updated: Oct 16, 2018. http://emedicine.medscape.com/article/885935-overview Accessed May 7, 2024.
McKusick VA., ed. Online Mendelian Inheritance in Man (OMIM). Baltimore. MD: The Johns Hopkins University; Entry No: 240500; Last Update: 08/13/2013. Available at: http://www.ncbi.nlm.nih.gov/omim/240500 Accessed May 7, 2024.
McKusick VA., ed. Online Mendelian Inheritance in Man (OMIM). Baltimore. MD: The Johns Hopkins University; Entry No: 607594; Last Update 02/26/2024.Available at: http://www.ncbi.nlm.nih.gov/omim/607594 Accessed May 7, 2024.
Schwartz RA, Modak RM, Modak P. Common Variable Immunodeficiency. Medscape. Last Update Updated: Jun 08, 2022.http://emedicine.medscape.com/article/1051103-overview Accessed May 7, 2024.
NORD y la Fundación MedicAlert se han asociado en un nuevo programa para brindar protección a pacientes con enfermedades raras en situaciones de emergencia.
Aprende más https://rarediseases.org/patient-assistance-programs/medicalert-assistance-program/Asegurarse de que los pacientes y los cuidadores estén equipados con las herramientas que necesitan para vivir su mejor vida mientras manejan su condición rara es una parte vital de la misión de NORD.
Aprende más https://rarediseases.org/patient-assistance-programs/rare-disease-educational-support/Este programa de asistencia, primero en su tipo, está diseñado para los cuidadores de un niño o adulto diagnosticado con un trastorno raro.
Aprende más https://rarediseases.org/patient-assistance-programs/caregiver-respite/The information provided on this page is for informational purposes only. The National Organization for Rare Disorders (NORD) does not endorse the information presented. The content has been gathered in partnership with the MONDO Disease Ontology. Please consult with a healthcare professional for medical advice and treatment.
The Genetic and Rare Diseases Information Center (GARD) has information and resources for patients, caregivers, and families that may be helpful before and after diagnosis of this condition. GARD is a program of the National Center for Advancing Translational Sciences (NCATS), part of the National Institutes of Health (NIH).
View reportOrphanet has a summary about this condition that may include information on the diagnosis, care, and treatment as well as other resources. Some of the information and resources are available in languages other than English. The summary may include medical terms, so we encourage you to share and discuss this information with your doctor. Orphanet is the French National Institute for Health and Medical Research and the Health Programme of the European Union.
View report