• Disease Overview
  • Synonyms
  • Signs & Symptoms
  • Causes
  • Affected Populations
  • Disorders with Similar Symptoms
  • Diagnosis
  • Standard Therapies
  • Clinical Trials and Studies
  • References
  • Programs & Resources
  • Complete Report

Cornelia de Lange Syndrome

Print

Last updated: o7/20/2023
Years published: 1984, 1985, 1987, 1989, 1992, 1993, 1995, 1997, 1998, 1999, 2000, 2003, 2004, 2007, 2008, 2016, 2020


Acknowledgment

NORD gratefully acknowledges Antonie Kline, MD, Medical Director, Cornelia de Lange Syndrome (CdLS) Foundation, Inc., Director of Pediatric Genetics, Harvey Institute of Human Genetics, Greater Baltimore Medical Center, for assistance in the preparation of this report.


Disease Overview

Cornelia de Lange syndrome (CdLS) is a rare genetic disorder that is generally apparent at birth (congenital). Associated symptoms and findings typically include delays in physical development before and after birth (prenatal and postnatal growth delay); characteristic appearance of the head and facial (craniofacial) area, resulting in a distinctive facial appearance; malformations of the hands and arms (upper limbs); and mild to severe intellectual disability. Many infants and children with the disorder have an unusually small, short head (microbrachycephaly); a prominent vertical groove between the upper lip and nose (philtrum); a depressed nasal bridge; upturned nostrils (anteverted nares); and a small chin (micrognathia). Additional characteristic facial features may include thin, downturned lips; low-set ears; arched, well-defined eyebrows that grow together across the base of the nose (synophrys); an unusually low hairline on the forehead and the back of the neck; and curly, unusually long eyelashes. Affected individuals may also have distinctive malformations of the limbs, such as unusually small hands and feet, inward deviation (clinodactyly) of the fifth fingers, and webbing (syndactyly) of certain toes. Less commonly, there may be absence of the forearms, hands, and fingers. Infants with CdLS may also have feeding and breathing difficulties; an increased susceptibility to respiratory infections; a low-pitched โ€œgrowlingโ€ cry and low voice; heart defects; delayed skeletal maturation; hearing loss; or other physical differences. The range and severity of associated symptoms and findings may be extremely variable from person to person.

CdLS can be inherited as an autosomal dominant condition or an X-linked condition. Seven genes have been found to be associated with CdLS including the NIPBL gene on chromosome 5, the SMC1A gene on the X chromosome, the SMC3 gene on chromosome 10, the Rad21 gene on chromosome 8, the HDAC8 gene on the X chromosome, the ANKRD11 on chromosome 16 and the BRD4 gene on chromosome 19. Most affected individuals have an abnormal gene as a result of a new gene mutation and do not have an affected parent. Other genes may be found to be associated with CdLS in the future. It is now referred to as Cornelia de Lange syndrome spectrum because of the broad nature of the presentations.

  • Next section >
  • < Previous section
  • Next section >

Synonyms

  • BDLS
  • Brachmann-de Lange syndrome
  • CdLS
  • de Lange syndrome
  • Cornelia de Lange syndrome spectrum
  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Signs & Symptoms

CdLS is a very rare disorder characterized by growth delays; distinctive facial features; malformations of the hands, feet, arms, and/or legs (limb anomalies); other physical differences; intellectual disability and/or developmental delays. The range and severity of symptoms and physical characteristics may vary greatly from person to person.

Individuals with CdLS exhibit abnormal growth delays that affect both weight and linear growth before and after birth (prenatal and postnatal growth delay). Most affected infants may have a low birth weight and may fail to gain weight or grow at the expected rate (failure to thrive). CdLS growth charts are available to compare growth to other affected individuals. Individuals may experience feeding, chewing, and swallowing difficulties during the first several months/years of life.

Many affected infants may frequently โ€œspit upโ€ food that has already been swallowed (regurgitation) and may experience episodes of severe, forceful vomiting (projectile vomiting). Infants with CdLS may also demonstrate abnormally increased muscle tone (hypertonicity) and have an unusual, low-pitched, growling cry.

Individuals with CdLS also have distinctive features of the head and facial (craniofacial) area including a small head (microcephaly) that may also be unusually short (brachycephaly); a short, thick neck; low hairline; small, broad, upturned nose with nostrils that tip upwards (anteverted nares); neat, arched eyebrows that grow together (synophrys); long, curly eyelashes and/or excessive hair growth on various areas of the body (hypertrichosis). Additional features may include thin, downturned lips; a long vertical gap between the upper lip (philtrum) and the nose; a small, underdeveloped jaw (micrognathia); late-erupting, widely-spaced, small teeth; and low-set ears. Some affected infants may also have an incomplete closure of the roof of the mouth (cleft palate), a hidden incomplete closure (submucous cleft palate) and/or a highly arched palate.

Most infants with CdLS have hands and feet that are small for their size. In addition, affected individuals may have short fingers that become smaller and thinner toward the ends (tapered fingers), fifth fingers that are permanently curved toward the ring finger (clinodactyly) and/or absence of one or more fingers (oligodactyly). The thumbs may be abnormally positioned (i.e., proximally placed) and the arms may be permanently bent or flexed at the elbows due to bone fusions. Many affected individuals have underdevelopment (hypoplasia) of some of the bones of the fingers and toes, and the second and third toes are often fused or webbed (syndactyly). Some affected infants may also have, in rare cases, missing fingers, hands and forearms. Upper limb differences may involve one side (unilateral) or both sides (bilateral) of the body. If bilateral limb malformations are present, those on one side of the body may be completely different from those on the other side (asymmetrical). Although the feet are small, only in extremely rare cases are there absent bones in the feet or lower legs.

Individuals with CdLS also have delayed bone age. In addition, affected individuals may remain low in weight and have short stature (prenatal and postnatal growth delay), failure to thrive during infancy, delayed bone age and/or other differences. Many individuals with CdLS also exhibit additional skeletal abnormalities. These may include a deformity of the hip (coxa valga), a short breastbone (sternum) and/or abnormally thin ribs.

Many infants and children with CdLS may have delays in the acquisition of skills requiring the coordination of mental and muscular activity (psychomotor delay), mild to severe intellectual disability and/or demonstrate behavioral problems (e.g., episodes of biting, screaming, hitting themselves, etc.). In addition, although affected children may have decreased facial expression based on emotion, they appear to respond positively to certain stimuli (e.g., fast movements). A CdLS developmental chart is available to compare milestones.

Many children with CdLS also have hearing impairment as well as delayed speech development. Middle ear infections (otitis media), which sometimes occur chronically with an accumulation of sticky fluid (otitis media with effusion or glue ear) are common. Younger children may have difficulty speaking (dysphonia and/or apraxia), while older children may have abnormally hoarse speech.

Many individuals with CdLS also exhibit additional physical differences. The skin may appear โ€œmarbledโ€ (cutis marmorata) and the skin above the eyes, mouth, and nose may have an unusual bluish tone. Many affected individuals have irregularities in the skin ridge patterns on the palms of the hands (dermatoglyphics). As mentioned earlier, most affected individuals may have excessive hair growth (hypertrichosis) on various areas of the body including the ears. Hair may also tend to appear on the lower back, limbs and/or other areas of the body.

Many individuals with CdLS also have various abnormalities of the gastrointestinal system including gastroesophageal reflux, a condition in which the acidic contents of the stomach flow upward into the lower esophagus; inflammation of the lining of the esophagus (esophagitis) and/or narrowing of the esophagus (esophageal stenosis). In addition, affected individuals are at risk for twisting (malrotation) of the intestines, potentially causing intestinal obstruction (volvulus). In some children, the bands of muscle fibers (pyloric sphincter) at the junction between the stomach and small intestine (pyloric stenosis) may become narrowed (stenosis) in infancy, resulting in obstruction of the normal flow of stomach contents into the small intestine. In addition, some individuals with CdLS may also have protrusion of portions of the large intestine through an opening in musculature lining the abdominal cavity in the area of the groin (inguinal hernia) and/or part of the stomach through an opening where the esophagus passes through the diaphragm (hiatal hernia). Some babies with CdLS are born with diaphragmatic hernia, in which some of the contents of the abdomen have not been separated from the lungs as a fetus; this needs to be repaired for survival. In some individuals with CdLS, certain gastrointestinal abnormalities may lead to intestinal obstruction, potentially causing serious or life-threatening complications if left untreated.

Some individuals with CdLS may also have malformations of the genitourinary tract. In affected males, such abnormalities may include underdevelopment (hypoplasia) of the genitals, failure of one or both of the testes to descend into the scrotum (cryptorchidism) and/or abnormal placement of the urinary opening (urinary meatus) on the underside of the penis (hypospadias). Affected females may have abnormal development of the uterus (e.g., bicornate or septate uterus) and menstruation may be irregular.

Many children with CdLS have additional physical differences including various heart (cardiac) abnormalities. Some affected individuals may also have an increased susceptibility to repeated respiratory infections, eye abnormalities such as nearsightedness (myopia), rapid, involuntary eye movements (nystagmus) and/or abnormal drooping of the upper eyelid(s) (ptosis). Some infants and children with CdLS may also experience episodes of uncontrolled electrical disturbances in the brain (seizures).

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Causes

CdLS can be inherited as an autosomal dominant condition or an X-linked condition. Most affected individuals have an abnormal gene as a result of a new gene mutation. Seven genes have been found to be associated with CdLS including the NIPBL gene on chromosome 5, the SMC1A gene on the X chromosome, the SMC3 gene on chromosome 10, the Rad21 gene on chromosome 8, the HDAC8 gene on the X chromosome, the ANKRD11 on chromosome 16 and the BRD4 gene on chromosome 19. Approximately 60% of those affected have a NIPBL gene mutation and a small percentage (about 10%) have mutations in the other genes. Other genes may be found to be associated with CdLS in the future.

Dominant genetic disorders occur when only a single copy of an abnormal gene is necessary to cause a particular disease. The abnormal gene can be inherited from either parent or can be the result of a new mutation (gene change) in the affected individual. The risk of passing the abnormal gene from affected parent to offspring is 50% for each pregnancy. The risk is the same for males and females.

X-linked genetic disorders are conditions caused by an abnormal gene on the X chromosome and occur mostly in males. Females that have a disease gene present on one of their X chromosomes are carriers for that disorder. Carrier females usually do not display symptoms because females have two X chromosomes and one is inactivated so that the genes on that chromosome are nonfunctioning. It is often the X chromosome with the abnormal gene that is inactivated. However, in CdLS, because the gene change is likely dominant over the corresponding gene on the X chromosomes, females also often show similar findings as males.

Males have one X chromosome that is inherited from their mother and if a male inherits an X chromosome that contains a disease gene he will develop the disease. Female carriers of an X-linked disorder have a 25% chance with each pregnancy to have a carrier daughter like themselves, a 25% chance to have a non-carrier daughter, a 25% chance to have a son affected with the disease and a 25% chance to have an unaffected son. Males with X-linked disorders pass the disease gene to all of their daughters who will be carriers. A male cannot pass an X-linked gene to his sons because males always pass their Y chromosome instead of their X chromosome to male offspring.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Affected populations

CdLS is a very rare disorder that is apparent at birth (congenital). Males and females appear to be affected in equal numbers. It has been estimated that CdLS occurs in approximately one in every 10,000 live births in the United States. More than 400 cases have been reported in the medical literature, including affected individuals within several families (kindreds). Multiple affected siblings have been reported in some families. It is estimated that there is a 1-2 % rate of recurrence within affected families.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Diagnosis

Most children with CdLS are diagnosed clinically after birth or in childhood based upon a thorough clinical evaluation and identification of characteristic physical findings. A diagnosis of CdLS should be considered in children who exhibit certain distinctive facial features in association with limb anomalies, prenatal and postnatal growth delay and intellectual disability. Diagnosis may be more difficult if symptoms and physical characteristics associated with the disorder are very mild. Molecular genetic testing for mutations in the five genes associated with CdLS is available to confirm the diagnosis and may be particularly helpful when the physical features are mild or unusual. Prenatal diagnosis is available if a specific NIPBL, SMC1A, SMC3, Rad21, HDAC8, ANKRD11 or BRD4 gene mutation has been identified.

Sometimes a diagnosis of CdLS may be suspected before birth (prenatally) through the use of ultrasound imaging. During such testing, reflected sound waves create an image of the fetus that may reveal certain characteristics of CdLS such as delayed growth, limb abnormalities, facial anomalies and/or organ malformations.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Standard Therapies

Treatment
The treatment of CdLS is directed toward the specific symptoms that are apparent in each individual. Treatment may require the efforts of a team of specialists working together to systematically and comprehensively plan an affected childโ€™s treatment. Such specialists may include pediatricians; geneticists; surgeons; specialists who diagnose and treat skeletal disorders (orthopedists); plastic surgeons; orthopedic surgeons; specialists who diagnose and treat abnormalities of the digestive system (gastroenterologists), feeding specialists, disorders of the urinary tract (urologists), and abnormalities of the ears, nose, and throat (otolaryngologists); pediatric heart specialists (cardiologists); dental specialists; speech pathologists; specialists who assess and treat hearing problems (audiologists); eye specialists; physical and occupational therapists and/or other health care professionals.

Affected infants and children may be closely monitored for certain abnormalities potentially associated with CdLS (e.g., potential intestinal obstruction due to gastrointestinal abnormalities, cardiac defects, gastroesophageal reflux, glue ear and/or susceptibility to respiratory infections) to ensure early detection and prompt treatment.

Specific therapies for the treatment of CdLS are symptomatic and supportive. In some children, surgery may be performed to help correct cleft palate, cardiac defects and/or diaphragmatic hernias. Plastic surgery may be helpful in reducing excessive hair. Some gastrointestinal, genitourinary and/or cardiac malformations may be treated with certain medications, surgical intervention and/or other techniques. The surgical procedures performed will depend upon the location and severity of the anatomical differences and their associated symptoms. Respiratory infections may be treated with antibiotic drug therapy and/or other medications that may help fight infection.

Various orthopedic techniques may be used to help treat limb differences. Hearing aids may be beneficial in some children. Treatment with anticonvulsant medications may help prevent, reduce or control seizures in some affected children.

Early intervention is important in ensuring that children with CdLS reach their highest potential. Services that may be beneficial include special remedial education, vocational training, speech therapy and/or other medical and/or social services.

Genetic counseling is recommended for affected individuals and their families. Other treatment is symptomatic and supportive.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Clinical Trials and Studies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov . All studies receiving U.S. government funding, and some supported by private industry, are posted on this web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222
TTY: (866) 411-1010
Email: [email protected]

Some current clinical trials also are posted on the following page on the NORD website:
https://rarediseases.org/living-with-a-rare-disease/find-clinical-trials/

For information about clinical trials sponsored by private sources, contact:
www.centerwatch.com

For information about clinical trials conducted in Europe, contact:
https://www.clinicaltrialsregister.eu/

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

References

TEXTBOOKS
Jones KL. Smithโ€™s Recognizable Patterns of Human Malformation. 7th ed. Philadelphia, PA; W.B. Saunders Company; 2013:118-121.

Adams RD, et al., eds. Principles of Neurology. 6th ed. New York, NY; McGraw-Hill Companies, Inc.; 1997:1001.

Buyse ML. Birth Defects Encyclopedia. Dover, MA; Blackwell Scientific Publications, Inc.; 1990:333-334, 486-487.

Hennekam RCM, et al., eds. Gorlinโ€™s Syndromes of the Head and Neck. 5th ed. New York, NY; Oxford University Press; 2010:428-434.

Cassidy SB and Allanson JE. Management of Genetic Syndromes, 3rd ed. Hoboken, NJ: Wiley-Blackwell. 2010:195-209.

JOURNAL ARTICLES
Kline AD, Moss JF, Selicorni A, et al. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet 2018;19(10):649-66.

Kline AD, Calof AL, Lander AD, et al. 2015. Clinical, development and molecular update on Cornelia de Lange syndrome and the cohesin complex: abstracts from the 2014 Scientific and Educational Symposium. Am J Med Genet A. 2015 Jun;167(6):1179-92.

Srivastava S, Landy-Schmitt C, Clark B, Kline AD, Specht M, Grados MA. Autism traits in children and adolescents with Cornelia de Lange syndrome. 2014 Jun;164A(6):1400-10.

Deardorff MA, Wilde JJ, Albrecht M, Dickinson E, Tennstedt S, Braunholz D, Monnich M, Yan Y, Xu W, Gil-Rodriguez Mc, Clark D, Hakonarson H. RAD21 mutations cause a human cohesinopathy. Am J Hum Genet. 2012;Jun 8;90(6):1014-27.

Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, Cole KE, De Baere E. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 2012;Sep 13;489(7415):313-7.

Moss J, Howlin P, Magiati I, Oliver C. Characteristics of autism spectrum disorder in Cornelia de Lange syndrome. J Child Psychol Psychiatry 2012;53:883-91
Nakanishi M, Deardorff MA, Clark D, Levy SE, Krantz I, Pipan M. Investigation of autistic features among individuals with mild to moderate Cornelia de Lange Syndrome. Am J Med Genet. 2012;158:1841-1847.

Stavinoha RC, Kline AD, Levy HP, Kimball A, Mettel TL, Ishman SL. Characterization of sleep disturbance in Cornelia de Lange Syndrome. Internat J Ped Otorhinolaryngol. 2011;75:215-8.

Oliver C, Arron K, Sloneem J, Hall S. Behavioral phenotype of Cornelia de Lange syndrome: a case-control study. Br J Psychiatry 2008;193:466-70.

Basile E, Villa L, Selicorni A, Molteni M. The behavioral phenotype of Cornelia de Lange syndrome: A study of 56 individuals. J Intellect Disabil Res. 2007;51:671-81.

Deardorff M, Kaur M, Yaeger D, et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet. 2007;80:485-94.

Kline AD, Grados M, Sponseller P, et al. Natural history of aging in Cornelia de Lange syndrome. Am J Med Genet C Semin Med Genet. 2007;Aug 15;145C(3):248-60.

Kline AD, Krantz ID, Sommer A, et al. Cornelia de Lange syndrome: clinical review, diagnostic and scoring systems, and anticipatory guidance. Am J Med Genet. 2007;143A:1287-1296.

Musio A, Selicorni A, Focarelli ML, et al. X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations Nat Genet. 2006:38:528-30.

Tonkin ET, Wang TJ, Lisgo S, et al. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet. 2004;36:636-41.

INTERNET
McCusick VA, ed. Online Mendelian Inheritance in Man, (OMIM). Cornelia deLange Syndrome. The John Hopkins University. Entry Number 122470; Last edit 05/15/2019. Available at: https://omim.org/entry/122470. Accessed October 28, 2019.

Cornelia de Lange syndrome. Genetics Home Reference. Reviewed Sept. 2015.Available at: https://ghr.nlm.nih.gov/condition/cornelia-de-lange-syndrome Accessed October 28, 2019.

Deardorff MA, Noon SE, Krantz ID. Cornelia de Lange Syndrome. 2005 Sep 16 [Updated 2016 Jan 28]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviewsยฎ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1104/ Accessed October 28, 2019.

  • < Previous section
  • Next section >

Programs & Resources

RareCare logo in two lines.

RareCareยฎ Assistance Programs

NORD strives to open new assistance programs as funding allows. If we donโ€™t have a program for you now, please continue to check back with us.

Additional Assistance Programs

MedicAlert Assistance Program

NORD and MedicAlert Foundation have teamed up on a new program to provide protection to rare disease patients in emergency situations.

Learn more https://rarediseases.org/patient-assistance-programs/medicalert-assistance-program/

Rare Disease Educational Support Program

Ensuring that patients and caregivers are armed with the tools they need to live their best lives while managing their rare condition is a vital part of NORDโ€™s mission.

Learn more https://rarediseases.org/patient-assistance-programs/rare-disease-educational-support/

Rare Caregiver Respite Program

This first-of-its-kind assistance program is designed for caregivers of a child or adult diagnosed with a rare disorder.

Learn more https://rarediseases.org/patient-assistance-programs/caregiver-respite/

Patient Organizations


More Information

The information provided on this page is for informational purposes only. The National Organization for Rare Disorders (NORD) does not endorse the information presented. The content has been gathered in partnership with the MONDO Disease Ontology. Please consult with a healthcare professional for medical advice and treatment.

GARD Disease Summary

The Genetic and Rare Diseases Information Center (GARD) has information and resources for patients, caregivers, and families that may be helpful before and after diagnosis of this condition. GARD is a program of the National Center for Advancing Translational Sciences (NCATS), part of the National Institutes of Health (NIH).

View report
Orphanet

Orphanet has a summary about this condition that may include information on the diagnosis, care, and treatment as well as other resources. Some of the information and resources are available in languages other than English. The summary may include medical terms, so we encourage you to share and discuss this information with your doctor. Orphanet is the French National Institute for Health and Medical Research and the Health Programme of the European Union.

View report
National Organization for Rare Disorders