• Disease Overview
  • Synonyms
  • Signs & Symptoms
  • Causes
  • Affected Populations
  • Disorders with Similar Symptoms
  • Diagnosis
  • Standard Therapies
  • Clinical Trials and Studies
  • Resources
  • References
  • Programs & Resources
  • Complete Report

Tyrosinemia Type 1


Last updated: September 12, 2019
Years published: 1987, 1988, 1990, 1992, 1994, 1995, 1996, 1999, 2000, 2002, 2003, 2010, 2019


NORD gratefully acknowledges Kshitiz Singh, PhD, Research Fellow, The Children’s Hospital of Philadelphia, and Robert M. Tanguay, DSc, Professor and Associate Head, Department of Molecular Biology, Medical Biochemistry & Pathology, Lab Cell & Developmental Genetics, Universite Laval, Quebec, Canada, for assistance in the preparation of this report.

Disease Overview

Tyrosinemia type I is a rare autosomal recessive genetic metabolic disorder characterized by lack of the enzyme fumarylacetoacetate hydrolase (FAH), which is needed for the final break down of the amino acid tyrosine. Failure to properly break down tyrosine leads to abnormal accumulation of tyrosine and its metabolites in the liver, potentially resulting in severe liver disease. Tyrosine may also accumulate in the kidneys and central nervous system.

Symptoms and physical findings associated with tyrosinemia type I appear in the first months of life and include failure to gain weight and grow at the expected rate (failure to thrive), fever, diarrhea, vomiting, an abnormally enlarged liver (hepatomegaly), and yellowing of the skin and the whites of the eyes (jaundice). Tyrosinemia type I may progress to more serious complications such as severe liver disease, cirrhosis, and hepatocarcinoma if left untreated. Treatment with nitisinone and a low-tyrosine diet should begin as soon as possible after the diagnosis is confirmed.

  • Next section >
  • < Previous section
  • Next section >


  • FAH deficiency
  • fumarylacetoacetase deficiency
  • fumarylacetoacetate hydrolase deficiency
  • hepatorenal tyrosinemia
  • hereditary tyrosinemia type 1
  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Signs & Symptoms

Symptoms associated with tyrosinemia type I often vary greatly from person to person. Infants with tyrosinemia type I typically present with either the acute or chronic form of the disorder.

The acute form of tyrosinemia type I is present at birth (congenital) or during the first months of life. This form of the disorder is more common and severe than the chronic form. Infants with the acute form exhibit rapid onset of symptoms usually beginning with failure to gain weight and grow at the expected rate (failure to thrive). Additional early symptoms include fever, diarrhea, bloody stools (melena), and vomiting. Affected infants may also exhibit an abnormally enlarged liver (hepatomegaly), a tendency to bruise easily, jaundice, lethargy, and/or irritability. Some affected infants may develop a distinctive, cabbage-like odor.

Eventually infants with the acute form of tyrosinemia type I experience developmental delays, an abnormally enlarged spleen (splenomegaly), and accumulation of fluid (edema) in the abdomen (ascites). The disorder may rapidly progresses to acute life-threatening liver failure and blood clotting abnormalities (coagulopathy).

The chronic form of tyrosinemia type I occurs less frequently than the acute form and is characterized by a more gradual onset and less severe expression of the symptoms. Symptoms of tyrosinemia type I may not become apparent in infants with the chronic form of the disorder until after six months of age. Failure to thrive is often the first symptom. Additional symptoms include developmental delays and progressive scarring and impaired function (cirrhosis) of the liver resulting in chronic liver failure.

Many infants with tyrosinemia type I develop kidney (renal) abnormalities such as renal Fanconi syndrome, a rare disorder characterized by kidney dysfunction that often leads to progressive softening and weakening of the bone structure (rickets). Fanconi syndrome is also associated with episodes of vomiting, dehydration, weakness, and fever.

Approximately 40 percent of affected infants also experience episodes of disease affecting many nerves (polyneuropathy) often following a minor infection. These episodes, which may be referred to as neurological crises, are associated with severe pains in the legs and stomach, increased muscle tone (hypertonia), vomiting, obstruction of the intestines (ileus), an irregular heartbeat (tachycardia), and high blood pressure (hypertension). Some affected individuals may also exhibit self-mutilating behavior (e.g., biting one’s tongue or grinding the teeth) during these episodes. Neurological crises and respiratory failure may occur.

Affected infants may also experience enlargement (hypertrophy) of the partition that separates the left and right ventricles of the heart and, in some children, of the left ventricular wall (hypertrophic cardiomyopathy). In addition, affected infants and children are at a greater risk than the general population to develop a form of liver cancer known as hepatocellular carcinoma.

Treatment of affected children with nitisinone and a low-tyrosine diet has improved survival to over 90% and resulted in normal growth, improved liver function, prevention of cirrhosis, correction of kidney disease and improvement in rickets.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >


Tyrosinemia is caused by mutations in the fumarylacetoacetate hydrolase (FAH) gene that is responsible for the production of the FAH enzyme. Deficiency of this enzyme leads to an accumulation of fumarylacetoacetate and accumulation of tyrosine and its metabolites in the liver, kidney, and central nervous system eventually causing tyrosinemia type I.

Tyrosinemia type I is inherited as an autosomal recessive genetic condition.

Recessive genetic disorders occur when an individual inherits two copies of an abnormal gene for the same trait, one from each parent. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease but usually will not show symptoms. The risk for two carrier parents to both pass the defective gene and have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%. The risk is the same for males and females.

Parents who are close relatives (consanguineous) have a higher chance than unrelated parents to both carry the same abnormal gene, which increases the risk to have children with a recessive genetic disorder.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Affected populations

Tyrosinemia type I affects males and females in equal numbers. The prevalence has been estimated to be 1 in 100,000 to 120,000 births worldwide. In Quebec, Canada, the birth prevalence is estimated to be 1/16,000. The estimated prevalence in the Saguenay-Lac Saint-Jean region of Quebec is one in 1,850 births. In Norway, the birth prevalence is estimated to be 1 in 60,000 births.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >


A diagnosis of tyrosinemia type I is made based upon a thorough clinical evaluation, a detailed patient history, and specialized tests. A diagnosis of tyrosinemia type I may be suspected in infants who display failure to thrive and an enlarged liver (hepatomegaly) during the first three months of life. The diagnosis is likely when tyrosine metabolites and succinylacetone are detected in the urine. It is also possible to make the diagnosis based on decreased activity of FAH in liver tissue or cultured fibroblasts, but this test is not readily available. Molecular genetic testing for FAH gene mutations is available to confirm the diagnosis.

Tyrosinemia type I may also be diagnosed through newborn screening programs. Succinylacetone can be measured on the newborn blood spot by tandem mass spectroscopy. Most states in the U.S. screen every newborn for tyrosinemia type 1. Early detection is important because prompt identification and treatment may prevent the development of serious problems during infancy.

Carrier testing and prenatal diagnosis by DNA analysis are available if the specific gene-causing mutation has been identified in the family. Next Generation DNA sequencing techniques, like exome sequencing, whole genome sequencing (WGS) can help in identifying the mutations responsible for the disease. Prenatal diagnosis is also possible by detection of succinylacetone and DNA analysis in amniotic fluid.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Standard Therapies

In 2017, Nityr (nitisinone tablets) was approved by the U.S. Food and Drug Administration (FDA) for the treatment of hereditary tyrosinemia type 1. Nityr is manufactured by Cycle Pharmaceuticals.

The FDA approved the orphan drug Orfadin, a capsule and oral suspension formulation of nitisinone, to treat tyrosinemia type I in 2002. Nitisinone was developed by Swedish Orphan International Biovitrum AB and is marketed by Sobi, Inc.

These drugs should only be prescribed by physicians experienced in treating tyrosinemia type I since the correct dose must be adjusted for each patient according to specific biochemical tests and to the weight. Access to a nutritionist skilled in managing children with inborn errors of metabolism requiring a low protein diet is an important part of therapy. Blood tests should be monitored regularly to maintain the correct dose for the patient.

Nitisinone must be used in conjunction with a diet restricted in the amino acids tyrosine and phenylalanine. Treatment with nitisinone and dietary management should begin as soon as possible after the diagnosis is confirmed.

Infants with tyrosinemia type I are placed on a low protein diet that contains limited amounts of phenylalanine and tyrosine. Some affected infants have exhibited an improvement of liver and kidney abnormalities with dietary management alone. However, progression to cirrhosis, liver failure and potential hepatocellular carcinoma is still possible. Physicians often recommend that affected individuals observe a strict diet using special medical foods throughout their lifetime.

Liver transplantation may be required for affected infants who have already developed end-stage liver failure by the time of diagnosis, have evidence of liver cancer (hepatocellular carcinoma), or do not respond to nitisinone therapy. In some children, liver transplantation improves kidney function.

Genetic counseling is recommended for affected individuals and their families. Other treatments are symptomatic and supportive.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Clinical Trials and Studies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government website.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222
TTY: (866) 411-1010
Email: prpl@cc.nih.gov

Some current clinical trials also are posted on the following page on the NORD website:

For information about clinical trials sponsored by private sources, contact:

For information about clinical trials conducted in Europe, contact:

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >


Please note that some of these organizations may provide information concerning certain conditions potentially associated with this disorder (e.g., liver disease, etc.)

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >


Mitchell GA, Grompe M, Lambert M, and Tanguay RM (2001) Hypertyrosinemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Basis of Inherited Disease. McGraw Hill, NY, pp 1776-806.

Masurel-Paulet A, Poggi-Bach J, Rolland MO, et al. NTBC treatment in tyrosinaemia type 1: long-term outcome in French patients. J Inherit Metab Dis. 2008; 31: 81-7.

McKiernan PKJ. Nitisinone in the treatment of hereditary tyrosinaemia type 1. Drugs. 2006; 66: 743-50.

Rashed MS, Al-Ahaidib LY, Al-Dirbashi OY, et al. Tandem mass spectrometric assay of succinylacetone in urine for the diagnosis of hepatorenal tyrosinemia. Anal Biochem. 2005; 339: 310-7.

Pierik LJ, van Spronsen FJ, Bijleveld CM, van Dael CM. Renal function in tyrosinaemia type I after liver transplantation: a long-term follow-up. J Inherit Metab Dis. 2005; 28: 871-6.

van Spronsen FJ, Bijleveld CM, van Maldegem BT, Wijburg FA. Hepatocellular carcinoma in hereditary tyrosinemia type I despite 2-(2 nitro-4-3 trifl). J Pediatr Gastroenterol Nutr. 2005; 40: 90-3.

Russo P, Mitchell GA, Tanguay RM. Tyrosinemia: a review. Pediatr Dev Pathol 2001;4: 212-21.

Barkaoui E, Debray D, Habès D, Ogier H, Bernard O.Favorable outcome of treatment of NTBC of acute liver insufficiency disclosing hereditary tyrosinemia type I. Arch Pediatr. 1999;6:540-44.

Croffie JM, Gupta SK, Chong SK, Fitzgerald JF. Tyrosinemia type I should be suspected in infants with severe coagulopathy even in the absence of other signs of liver failure. Pediatrics. 1999;103:675-8.

Forget S, Patriquin HB, Dubois J, et al. The kidney in children with tyrosinemia: sonographic, CT and biochemical findings. Pediatr Radiol. 1999;29:104-08.

Burton BK. Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics. 1998;102:E69.

Poudrier J, Lettre F, Scriver CR, Larochelle J, Tanguay RM. Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. Mol Genet Metab. 1998;64:119-25.

St-Louis M, Tanguay RM. Mutations in the fumarylacetoacetate hydrolase gene causing hereditary tyrosinemia type I: overview. Hum Mutat. 1997;9:291-99.

Paradis K Tyrosinemia: the Quebec experience. Clin Invest Med. 1996;19:311-16.

Holme E, Lindstedt S. Diagnosis and management of tyrosinemia type I. Curr Opin Pediatr. 1995;7:726-32.

van Spronsen FJ, Thomasse Y, Smit GP et al. Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology. 1994;20:1187-90.

Sniderman King L, Trahms C, Scott CR. Tyrosinemia Type I. 2006 Jul 24 [Updated 2017 May 25]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1515/ Accessed Sept 10, 2019.

McKusick VA, ed. Online Mendelian Inheritance in Man (OMIM). Baltimore, MD: The Johns Hopkins University; Entry No. 276700; Last Update: 06/12/2019. https://www.omim.org/entry/276700 Accessed 9/10/19.

  • < Previous section
  • Next section >

Programs & Resources

RareCare® Assistance Programs

NORD strives to open new assistance programs as funding allows. If we don’t have a program for you now, please continue to check back with us.

Additional Assistance Programs

MedicAlert Assistance Program

NORD and MedicAlert Foundation have teamed up on a new program to provide protection to rare disease patients in emergency situations.

Learn more https://rarediseases.org/patient-assistance-programs/medicalert-assistance-program/

Rare Disease Educational Support Program

Ensuring that patients and caregivers are armed with the tools they need to live their best lives while managing their rare condition is a vital part of NORD’s mission.

Learn more https://rarediseases.org/patient-assistance-programs/rare-disease-educational-support/

Rare Caregiver Respite Program

This first-of-its-kind assistance program is designed for caregivers of a child or adult diagnosed with a rare disorder.

Learn more https://rarediseases.org/patient-assistance-programs/caregiver-respite/

Patient Organizations

National Organization for Rare Disorders