• Disease Overview
  • Synonyms
  • Subdivisions
  • Signs & Symptoms
  • Causes
  • Affected Populations
  • Disorders with Similar Symptoms
  • Diagnosis
  • Standard Therapies
  • Clinical Trials and Studies
  • References
  • Programs & Resources
  • Complete Report

Cone Dystrophy


Last updated: June 14, 2021
Years published: 1991, 1999, 2007, 2010, 2021


NORD gratefully acknowledges Nivi Ahlawat, MS, NORD Editorial Intern from the Stanford University MS Program in Human Genetics and Genetic Counseling and Jennefer Kohler, MS, LCCG, Clinical Instructor (Affiliated), Department of Pediatrics, Division of Medical Genetics, Stanford University, for assistance in the preparation of this report.

Disease Overview


Cone dystrophy is a general term used to describe a group of rare eye disorders that affect the cone cells of the retina. Cone dystrophy can cause a variety of symptoms including decreased visual clarity (acuity), decreased color perception (dyschromatopsia), and increased sensitivity to light (photophobia). There are two main forms of cone dystrophy: stationary cone dystrophy and progressive cone dystrophy. In stationary cone dystrophy, symptoms tend to remain stable and are usually present at birth or early childhood. In progressive cone dystrophy, symptoms slowly worsen over time. The age of onset, progression and severity of cone dystrophy can vary greatly from one person to another, even among individuals with the same type of cone dystrophy. Some forms of cone dystrophy are inherited; other forms appear to occur by chance for no apparent reason (sporadically).

A variety of different and confusing names have been used to describe the various forms of cone dystrophy. Some researchers limit the term “cone dystrophy” to the progressive forms of the disorder. Other researchers use cone dystrophy as an umbrella term for both the stationary and progressive forms of cone dystrophy – examples of which include achromatopsia, incomplete achromatopsia, blue cone monochromatism and X-linked progressive cone dystrophy. This report is a general overview of stationary and progressive cone dystrophy. For more specific information on an individual form of cone dystrophy, use the disorder’s specific name as your search term in the Rare Disease Database or contact one of the organizations listed in the resources section of this report.

  • Next section >
  • < Previous section
  • Next section >


  • retinal cone degeneration
  • retinal cone dystrophy
  • < Previous section
  • Next section >
  • < Previous section
  • Next section >


  • progressive cone dystrophy
  • stationary cone dystrophy
  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Signs & Symptoms

The symptoms of cone dystrophy may vary from one person to another, even among individuals with the same form of the disorder. The age of onset, specific symptoms, severity and progression (if any) can vary greatly. The amount of vision loss varies and is difficult to predict. Affected individuals should talk to their physician and medical team about their specific case and associated symptoms.

Cone dystrophy results from damage to the cone cells of the retinas. The retinas are the thin layers of nerve cells that line the inner surface of the back of the eyes. The retinas sense light and convert it to nerve signals, which are then relayed to the brain through the optic nerve. The retina has two main types of cells: cones and rods. Cone and rod cells are called photoreceptors because they detect and respond to light stimuli.

Cone cells are located throughout the retina. The highest concentration of cone cells is clustered in the oval-shaped, yellowish area near the center of the retina (macula). Cone cells are involved in the part of vision that enables a person to see fine details, read or recognize faces. Cone cells also play a role in the perception of color. Cone cells function best in bright light. Rod cells are found throughout the retina except in the center. Rod cells enable people to see in low or limited light.

Cone dystrophy is sometimes broken down into two broad groups: stationary and progressive. Stationary cone dystrophy is usually present during infancy or early childhood and symptoms usually remain the same throughout life. In progressive cone dystrophy, associated symptoms become worse over time. Progressive cone dystrophy usually develops in late childhood or early during adulthood. However, the rate of progression and age of onset can vary greatly from one person to another.
Damage to cone cells can result in decreased clarity of vision (reduced visual acuity) when looking straight ahead (central vision), a reduced ability to see colors and an abnormal sensitivity to light (photophobia). Some affected individuals may not be able to see color at all and some may develop rapid, involuntary eye movements (nystagmus).

In the progressive form of cone dystrophy, vision continues to deteriorate over time. In many cases vision may deteriorate so that a person is considered “legally” blind (i.e., vision that is 20/200 or worse). Complete blindness is uncommon in individuals with cone dystrophy. Side (peripheral) vision is usually unaffected as well. Individuals with cone dystrophy can usually see well at night or in low light situations because the rod cells are usually unaffected. In rare cases, late in the disease course, some rod cells may become involved.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >


Many cases of cone dystrophy occur randomly for no identifiable reason (sporadically). Some forms are inherited in an autosomal dominant, autosomal recessive or X-linked pattern. Inherited forms of cone dystrophy are due to changes (mutations) in one of several genes that have been linked to cone dystrophy. These genes contain instructions for making proteins that play vital roles in the development, function and overall health of cone cells. The exact underlying mechanisms that cause cone dystrophy are not fully understood.

Dominant genetic disorders occur when only a single copy of a non-working gene is necessary to cause a particular disease. The non-working gene can be inherited from either parent or can be the result of a changed (mutated) gene in the affected individual. The risk of passing the non-working gene from an affected parent to an offspring is 50% for each pregnancy. The risk is the same for males and females.

X-linked genetic disorders are conditions caused by a non-working gene on the X chromosome and manifest mostly in males. Females that have a non-working gene copy on one of their X chromosomes are carriers for that disorder. Carrier females usually do not display symptoms because females have two X chromosomes and only one carries the non-working gene. Males have one X chromosome that is inherited from their mother and if a male inherits an X chromosome that contains a non-working gene he will develop the disease.

Female carriers of an X-linked disorder have a 25% chance with each pregnancy to have a carrier daughter like themselves, a 25% chance to have a non-carrier daughter, a 25% chance to have a son affected with the disease and a 25% chance to have an unaffected son.

A male with an X-linked disorder will pass the non-working gene to all of his daughters who will be carriers. A male cannot pass an X-linked gene to his sons because males always pass their Y chromosome instead of their X chromosome to male offspring.

Less often, cone dystrophy may be inherited in an autosomal recessive pattern. Recessive genetic disorders occur when an individual inherits a non-working gene copy from each parent. If an individual receives one working gene and one non-working gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the non-working gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier, like the parents, is 50% with each pregnancy. The chance for a child to receive working genes from both parents is 25%. The risk is the same for males and females.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Affected populations

Cone dystrophy affects males and females in equal numbers when it occurs sporadically or is inherited in an autosomal dominant or recessive pattern. The X-linked form of cone dystrophy only affects males fully, although some females may have mild symptoms of the disorder. The exact incidence of cone dystrophy is unknown. Most sources estimate that the condition affects 1 in 30,000 individuals in the general population.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >


A diagnosis of cone dystrophy is made based on identification of characteristic symptoms, a detailed family history, and a thorough clinical evaluation involving ophthalmological exams that measure visual acuity, the ability to perceive color and field of vision. An electroretinogram (ERG) is used to confirm the diagnosis of cone dystrophy.

During an ERG, eye drops are used to numb the eye before placing a special contact lens-electrode on the eye. The patient then watches a set of flashing lights in order to stimulate the retina. Doctors can then measure the electrical signals made by the cone and rod cells. An ERG test is performed twice – once in a bright room and once in a dark room. The test can determine whether cone and rod cells are functioning properly. A weak or absent signal of cone cells indicates cone dystrophy.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Standard Therapies


There is no cure for cone dystrophy. Treatment is directed toward the specific symptoms that are apparent in each individual. Treatment may include using tinted lenses or dark sunglass in bright environments and magnifying devices to assist in reading and other similar activities.

Genetic counseling is recommended for affected individuals and their families. Genetic counselors help individuals and families assess the chance of inherited disease as well as understand and adapt to its implications. Other treatment is symptomatic and supportive.

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >

Clinical Trials and Studies

Information on current clinical trials is posted on the Internet at https://clinicaltrials.gov/. All studies receiving U.S. Government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222
TTY: (866) 411-1010
Email: prpl@cc.nih.gov

Some current clinical trials also are posted on the following page on the NORD website: https://rarediseases.org/living-with-a-rare-disease/find-clinical-trials/

For information about clinical trials sponsored by private sources, contact: http://www.centerwatch.com/

For information about clinical trials conducted in Europe, contact: https://www.clinicaltrialsregister.eu/

  • < Previous section
  • Next section >
  • < Previous section
  • Next section >


Tsang SH, Sharma T. Progressive cone dystrophy and cone-rod dystrophy (XL, AD, and AR). In: Atlas of Inherited Retinal Diseases. Cham, Switzerland: Springer; 2018:53-60.

Heckenlively, John R. Cone Dystrophies and Degenerations. In: Principles and Practice of Clinical Electrophysiology of Vision, JR Heckenlively and GB Arden editors. 2006 MIT Press, Cambridge, MA. pp. 795-802.

Ho AC, Brown GC, McNamara JA. Eds. Retina: Color Atlas & Synopsis of Clinical Ophthalmology. McGraw-Hill Companies, Inc. Columbus, OH. 2003:146-147.

Tasman W, Jaeger EA, ed. Atlas of Clinical Ophthalmology, 2nd ed. Lippincott, Williams & Wilkins. Philadelphia;2001:173-174.


Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med. 2014;5(2):a017111.

Kohl S. Genetic causes of hereditary cone and cone-rod dystrophies. Ophthalmologe. 2009;106:109-115.

Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE. Rod and cone photoreceptor function in patients with cone dystrophy. Invest Ophthalmol Vis Sci. 2004;45:275-281.

Michaelides M, Aligianis IR, Ainsworth JR, et al. Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci. 2004;45:1975-1982.

Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol. 2004;88:291-297.

  • < Previous section
  • Next section >

Programs & Resources

RareCare® Assistance Programs

NORD strives to open new assistance programs as funding allows. If we don’t have a program for you now, please continue to check back with us.

Additional Assistance Programs

MedicAlert Assistance Program

NORD and MedicAlert Foundation have teamed up on a new program to provide protection to rare disease patients in emergency situations.

Learn more https://rarediseases.org/patient-assistance-programs/medicalert-assistance-program/

Rare Disease Educational Support Program

Ensuring that patients and caregivers are armed with the tools they need to live their best lives while managing their rare condition is a vital part of NORD’s mission.

Learn more https://rarediseases.org/patient-assistance-programs/rare-disease-educational-support/

Rare Caregiver Respite Program

This first-of-its-kind assistance program is designed for caregivers of a child or adult diagnosed with a rare disorder.

Learn more https://rarediseases.org/patient-assistance-programs/caregiver-respite/

Patient Organizations

National Organization for Rare Disorders